HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学、量子計算などをテーマに扱っていきます

プログラミング

jaxのautogradをpytorchのautogradと比較、単回帰まで(速度比較追加)

はじめに 使う関数 autograd with pytorch autograd with jax Jax で単回帰

Pyro on PyTorch の時系列モデリングが超進化していた【HMM】

はじめに Pyroで時系列モデリング モジュールのインポート データ 時系列モデルの書き方 学習 検証(バックテスト) 予測

NumPyroとJax Numpyで時系列

はじめに コード モジュール データ モデル 事前分布からのサンプリング 推論 結果

PyTorchの周辺ライブラリ

PyTorch 確率的プログラミング GPyTorch Pyro BoTorch Ax Training Wrapper pytorch lightning ignite Catalyst skorch Computer Vision kaolin pytorch3d kornia

Pyro on PyTorchでベイズ予測分布(MAP推定、変分推論、MCMC)

はじめに Pyroおさらい データ モデル MAP推定 変分推論 変分近似分布 推論 予測 MCMC MCMCの実行 事後分布 予測分布

確率的プログラミング言語 pyro 基本

はじめに Pyro primitives 確率変数の実現値 sample 条件付き独立のベクトル化 plate 階層モデル 変分パラメータを扱う param poutine モデルの様子を把握する trace 条件付き分布の作成 condition まとめと変分推論の例

TensorFlow ProbabilityでMCMC

モジュール データとモデル データ モデル 学習前の生成モデルからのデータ 対数同時確率の計算 事後分布 MCMCを回す 確率遷移核 MCMC の設定 サンプリングの結果 EAP推定 ベイズ予測分布 ノイズ項を無しにした、回帰曲線のベイズ予測分布

TFPで階層モデルを書くときの便利なクラス tfd.JointDistributionCoroutine

はじめに 環境 階層モデル 例:モデル コード

変分モデルの書き方 Pyro

はじめに データの分布形状が既知な場合の推論 問題設定 ベイズ推論のためのモデリング 共役事前分布を用いた解析的推論 変分推論 Pyro で変分推論 振り返り 追記:変分ベイズ推論を応用した最尤推定、MAP推定 MAP推定 最尤推定

Graph Neural Network 系のライブラリメモ

はじめに PyTorch Deep Graph Library PyTorch Geometric TensorFlow graphnets おすすめ

Optunaでハイパーパラメータチューニング

【簡易速度比較】TensorFlow vs PyTorch

【確率的プログラミング】Edward2, Pyro, PyStanのベイズ線形回帰コードメモ

初学者が機械学習の勉強を進めるためには必ず手を動かす

カルマンフィルタのコード比較【numpy, pytorch, eager】

MXNet1つでChainerやKerasやTensorFlowのように書けるらしい

プログラムの実行方法「インタプリタ」と「コンパイラ」簡単にまとめ

Jupyter notebook の進化版!? JupyterLab

科学技術計算に向いている言語?Julia記事のまとめ

32bitのノートにAtomを入れてPythonを始める

機械学習をpythonではじめよう

matlabとpython matlab python フリーであること 機能の充実 ITはフリーウェアに支えられている pythonを学ぼう 機械学習を通して 機械学習をやるならpythonで良い 機械学習を始める まずはanacondaでpythonの導入 深層学習のライブラリをどうするか