HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学、量子計算などをテーマに扱っていきます

人工知能-ディープラーニング

ニューラルネットワークを用いた近年の変分推論2

はじめに ベイズ推論基本 ベイズ推論 ベイズ予測分布 変分推論 変分推論のアルゴリズム Normalizing Flows 確率分布の変換規則 変分推論への組み込み 具体的な変換の例 planner flow radius flow inverse autoregressive flow flow VAE VAE 基本 flow VAE

ディープラーニングは自動で特徴を抽出してくれる?

はじめに 特徴抽出とは ニューラルネットワークによる特徴抽出 深層学習は特徴抽出を自動で行うのか 補足:本当に自動機械学習に向けて

変分推論とVAEまでの流れ

はじめに 確率モデリング 例 ガウス分布から生起するデータ 回帰モデル ベイズモデリング MAP推定 変分推論 VAE Normalizing Flow

Graph Neural Network 系のライブラリメモ

はじめに PyTorch Deep Graph Library PyTorch Geometric TensorFlow graphnets おすすめ

TensorFlow Eager Execution + Keras API の基本

【クラスタリングの新トレンド?】DeepClusterとその発展の考察

活性化関数を特徴空間で見てみた【ニューラルネット基本の基本】

線形層と比較した畳み込み層

【PyTorch、Chainer、Keras、TensorFlow】ディープラーニングのフレームワークの利点・欠点【2017年10月更新】

ディープラーニングの大流行の中、様々なフレームワークが登場し、気軽にプログラミングができるようになりました。しかし、そんな中どのフレームワークを選べば良いかわからないという人も多いと思います。そんな人に少しでも参考になればと思い記事を書き…

ディープラーニングの応用のための具体的方針まとめ

ディープラーニングフレームワークの本まとめ

機械学習・深層学習Q&A

もうこれだけは絶対に把握しておいてください! ってものだけ。

【8月中】個人的に勉強したいことまとめ

複素ニューラルネットワークっていうのが有るらしい

自然勾配法関連のメモ

入力データの構造に着目した畳み込みニューラルネットとリカレントニューラルネット

リカレントネットワークの基本的な考え方

【書籍紹介】詳解ディープラーニング TensorFlow・Kerasによる時系列データ処理

最近発売されたディープラーニングの本。 基礎的な内容から始まり、主にリカレントネットワークを、TensorFlowとKerasによる実装を通して理解していきます。

ニューラルネットワークの線形変換と活性化関数について

【ただのボヤキ】統計学と機械学習とディープラーニングと

ディープラーニングを更に深くすることを可能にするか?Highway Networksのメモ

今更聞けないディープラーニングの話【ユニット・層・正則化・ドロップアウト】

ディープラーニングを手軽に始められるようにはなったものの、実際に学習を上手く進めるにはチューニングという作業が欠かせません。ここではチューニングの際に気をつけることをサラっとまとめておきます。

Chainerで勾配法の基礎の基礎を確認【ニューラルネット入門】

勾配法はニューラルネットワークの学習の基礎になります。基本的な問題を見て、勾配法を確認してみましょう。

今更聞けないLSTMの基本

ディープラーニングで畳込みニューラルネットに並ぶ重要な要素のであるLong Short-Term Memoryについて、その基本を解説します。

ディープラーニングは動的ネットワーク構築が主流になるか? TensorFlow Fold登場

誤差逆伝搬法(バックプロパゲーション)とは

ニューラルネットワークの学習の工夫

Deep learningに必須なハード:GPU

自動機械学習の登場。深層学習システムを開発する学習ソフトウェア

ニューラルネットのための最適化数学

はじめに 最適化数学 最適化問題の簡単な例 例題の解法 微分による解法の注意点 凸最適化問題 凸関数 凸関数の定義 ニューラルネットの学習 ニューラルネットの目的関数 ニューラルネットの勾配降下法 パラメータを求める戦略 勾配降下法 ニューラルネットの…