HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学、量子計算などをテーマに扱っていきます

数学-確率・統計

変分ベイズ法の心2

はじめに 変分ベイズ法の戦略 基本の復習 分布の評価指標 ELBO 変分ベイズ法の具体的手段 関数 $q$ をどのように置くのか はじめに 下記記事の続きで、お気持ちは理解している前提で進みます。 www.hellocybernetics.tech 変分ベイズ法の戦略 基本の復習 デ…

変分ベイズ法の心

ベイズ推論の基本 変分ベイズ学習 変分法の心 変分ベイズ法の戦略 ベイズ推論の基本 ベイズモデリングの概要については下記の記事を参考にしてください。 www.hellocybernetics.tech 概要をさらっとなぞると、ベイズ推論の基本的な話としては、観測データ $x…

ベイズモデリング勉強の外観

はじめに 上記発言の意図 アヒル本 須山ベイズ 渡辺ベイズ 確率モデリング 確率モデリングの概要 確率モデリング手順 予測モデル MAP推定値 EAP推定値 ベイズ予測分布 ベイズモデリングのまとめ はじめに 今回は下記のツイートが割と評判が合ったので、少し…

TensorFlow Probability コードメモ ① 確率分布周りの基本と最尤推定

【主成分分析(PCA)まとめ】分散最大化・確率的主成分分析・ベイズ主成分分析(MAP推定)まで

【確率的プログラミング】Edward2, Pyro, PyStanのベイズ線形回帰コードメモ

【凄く楽しいぞ!Stan!】給料モデリング【Python】

TensorFlow Probabilityでガウシアンプロセス回帰の最尤推定を実行してみる

【データ解析の基本中の基本】どういうデータを使うときにどういう解析をするのか

【機械学習ステップアップ】ベイズモデルの考え方

【機械学習ステップアップ】確率モデルの考え方

機械学習の予測モデルを一般化線形モデルで考える概要+ロジスティック回帰

【書評】ベイズ推論による機械学習入門

ベイズの勉強に良さそうな記事まとめ

【ベイズ推定って結局何なの?Part2】

統計物理学と機械学習の関係

【ベイズ推定って結局何なの?】

確率変数と確率質量関数・確率密度関数

統計学の考え方を抑えて機械学習との関連と相違を整理

確率の基本の基本

機械学習の重要なアプローチ:ベイズ理論

最大事後確率推定(MAP推定)の基本

機械学習のための確率基礎とベイズの定理

今回は機械学習の数式を追えるようになるために必要と思われ確率の基礎を記事にします。数式を追うための講座なので、確率がなんたるものなのかはある程度知っている前提とし、様々な確率の公式や定理がどのように使われるのかを見て行きたいと思います。 複…

指数型分布族について

確率分布にも種類は色々ありますが、その中でも指数型分布族と呼ばれる種類のものは良い性質を持っており、学習に用いやすいです。今回は指数分布族がどういう種類のものであるか、そしてどういう性質を持っているのかを解説していきたいと思います。 指数型…

MAP推定は最尤推定と何が違うのか

最も単純な思想である最小二乗誤差推定があります。 これは多変量解析や機械学習でも最も最初に学ぶであろう内容です。次には過学習を防ぐために正則化を用いることを学ぶかと思います。 これらが、確率論の導入によって最尤推定とMAP推定に含まれることを見…

ベイズ理論の概要

近年の機械学習でもベイズ理論に恩恵を受けている部分は多いです。ここではベイズ理論の概要を紹介していきます。 主観確率と客観確率 具体例1:判断装置 具体例2:代表選手選出 主観確率の乱用はご法度! パラメータ推定に関する違い 伝統的統計学の考え ベイ…