HELLO CYBERNETICS

深層学習、機械学習、強化学習、信号処理、制御工学、量子計算などをテーマに扱っていきます

確率的プログラミング言語 pyro 基本

  • はじめに
  • Pyro
  • primitives
    • 確率変数の実現値 sample
    • 条件付き独立のベクトル化 plate
    • 階層モデル
    • 変分パラメータを扱う param
  • poutine
    • モデルの様子を把握する trace
    • 条件付き分布の作成 condition
  • まとめと変分推論の例
続きを読む

ニューラルネットワークを用いた近年の変分推論2

  • はじめに
  • ベイズ推論基本
    • ベイズ推論
    • ベイズ予測分布
    • 変分推論
    • 変分推論のアルゴリズム
  • Normalizing Flows
    • 確率分布の変換規則
    • 変分推論への組み込み
    • 具体的な変換の例
      • planner flow
      • radius flow
      • inverse autoregressive flow
  • flow VAE
    • VAE 基本
    • flow VAE
続きを読む

TensorFlow Probability でカルマンフィルター(観測値から内部状態を探る)

  • はじめに
  • カルマンフィルタの意義
  • TFPでのカルマンフィルタ
    • モジュール
    • データの生成
    • TFPで線形状態空間モデルを作る
    • カルマンフィルタの実行
  • 追加実験
    • 追加実験1:状態と観測の次元が異なるケース
    • 追加実験2: 不可観測系
  • 最後に
続きを読む

TensorFlow ProbabilityでMCMC

  • モジュール
  • データとモデル
    • データ
    • モデル
    • 学習前の生成モデルからのデータ
    • 対数同時確率の計算
    • 事後分布
  • MCMCを回す
    • 確率遷移核
    • MCMC の設定
    • サンプリングの結果
    • EAP推定
    • ベイズ予測分布
    • ノイズ項を無しにした、回帰曲線のベイズ予測分布
続きを読む